
White Paper

Infrastructure as Code
Principles and Practical Implementations

Content
Introduction 3

Principles of Infrastructure as Code 4

Benefits of Infrastructure as Code 5

Practical Implementations of Infrastructure as Code 5

Deprovisioning in Infrastructure as Code 9

Advanced IaC Practices 11

Challenges and Solutions in Adopting IaC 12

Case Studies 12

Conclusion 13

White Paper | Infrastructure as Code 3

Introduction
Infrastructure as Code (IaC) is revolutionizing the way
IT infrastructure is managed and provisioned.

By treating infrastructure configuration and provisioning as software,
IaC allows organizations to achieve greater automation, consistency,
and scalability. This whitepaper explores the principles behind IaC,
 the benefits it offers, and practical implementations that can help
organizations effectively adopt this approach.

writes code Infrastructure

push

pull

version control

Infrastructure Code

Scripts

Templates

Policies
</>

White Paper | Infrastructure as Code 4

Principles of
Infrastructure as Code

 Declarative Configuration
In IaC, the desired state of the infrastructure is
described declaratively with scripts and configuration
files. Rather than specifying the steps to achieve a
state, you define the end state, and the IaC tool takes
care of the necessary changes.

 Version Control
IaC allows infrastructure configurations to be stored
in version control systems (VCS) such as Git. This
enables tracking changes, maintaining history, and
collaborating on infrastructure code just like
application code.

 Idempotency
Idempotency ensures that infrastructure code can be
applied multiple times without changing the result
beyond the initial application. This principle allows
repeated executions to produce the same outcome,
ensuring stability and predictability.

 Immutability
Immutable infrastructure involves creating new
instances rather than modifying existing ones. This
reduces the risk of configuration drift and ensures
consistency across environments.

 Automation
Automation is at the heart of IaC. Scripts and
configuration files automate the setup, deployment,
and management of infrastructure, reducing manual
intervention and human error.

 Consistency

IaC ensures that environments (development, testing,
production) are consistent. This consistency helps in
minimizing environment-specific bugs and behavior
discrepancies.

 Documentation as Code
With IaC, infrastructure documentation is inherent in
the configuration files. This self-documenting
approach makes it easier to understand and manage
the infrastructure setup.

White Paper | Infrastructure as Code 5

Benefits of
Infrastructure as Code

 Speed and Efficiency

IaC enables rapid provisioning and scaling of
infrastructure. Automation reduces the time required
to deploy new environments, allowing faster devel-
opment and deployment cycles.

 Scalability
IaC supports horizontal and vertical scaling by
automating the creation and configuration of
resources. This ensures that infrastructure can grow
to meet demand without manual intervention.

 Cost Savings
Automation reduces the need for manual labor, thus
lowering operational costs. Additionally, efficient
resource management prevents over-provisioning and
under-utilization of resources.

 Reduced Risk

IaC minimizes human error by automating repetitive
tasks. Version control and automated testing further
reduce the risk of configuration errors and incompati-
bilities.

 Consistency and Standardization
By using IaC, organizations can standardize their
infrastructure setups, ensuring that all environments
are configured consistently. This reduces the chances
of “it works on my machine” issues.

 Improved Collaboration

Storing infrastructure configurations in version
control systems facilitates better collaboration among
team members. Changes can be reviewed, discussed,
and approved before implementation.

Several tools and technologies support IaC implementations.
Some of the most popular ones include:

Practical Implementations
of Infrastructure as Code
Tools and Technologies

Terraform
A widely-used tool that supports multiple cloud providers
and allows infrastructure provisioning through a high-level
configuration language.

AWS CloudFormation
A service provided by Amazon Web Services that
enables the modeling and setting up of AWS resources
using JSON or YAML templates.

Ansible
An open-source tool that automates application
deployment, configuration management, and
orchestration.

Chef and Puppet
Configuration management tools that help manage
infrastructure by defining its desired state through code.

White Paper | Infrastructure as Code 6

01 | Install Terraform
First, download and install Terraform from the official
website https://www.terraform.io/downloads.html.
Follow the instructions for your operating system.

02 | Define Infrastructure Configuration
Create a directory for your Terraform configuration
files. Inside this directory, create a file named `main.tf`
and define your infrastructure.

03 | Initialize Terraform
Run the following command to initialize Terraform.
This command downloads the required providers and
sets up your working directory.

04 | Apply the Configuration
Apply the configuration to provision the defined
infrastructure:

05 | Verify and Manage
Once applied, you can verify the created resources
through the AWS Management Console. To make
changes, update the configuration files and reapply
the configuration with `terraform applỳ .

Terraform will display the actions it plans to take.
Review the changes and type `yes̀ to confirm.

Setting Up a Basic Infrastructure
with Terraform

White Paper | Infrastructure as Code 7

01 | Create a CloudFormation Template
Create a YAML or JSON file to define your infrastruc-
ture. Here’s an example in YAML:

02 | Deploy the Template
Upload the template to the CloudFormation service
through the AWS Management Console, CLI, or SDKs.
Here’s an example using AWS CLI:

03 | Manage the Stack
CloudFormation manages the stack, allowing updates
and deletions through the console or CLI. For updates,
modify the template and use the ‘update-stack’
command.

Configuring Infrastructure with
AWS CloudFormation

White Paper | Infrastructure as Code 8

01 | Install Ansible
Install Ansible using package managers like `apt̀ for
Ubuntu or `pip̀ for Python:

Or

02 | Define an Inventory File
Create an inventory file (`hosts̀) to define the target
servers:

03 | Write a Playbook
Create a playbook (`setup.yaml̀) to configure the
servers:

04 | Run the Playbook
Execute the playbook to configure the servers:

Configuration Management
with Ansible

White Paper | Infrastructure as Code 9

Deprovisioning in
Infrastructure as Code
Deprovisioning is a critical aspect of infrastructure management, ensuring
that resources that are no longer needed are correctly and efficiently removed.
Proper deprovisioning helps in cost management, security, and maintaining a
clean and manageable infrastructure environment.

Principles of Deprovisioning

Deprovisioning with Terraform

 Automation

Deprovisioning should be automated to ensure
consistency and reduce human error. Automation
tools can handle the deprovisioning of resources as
part of the IaC lifecycle.

 Idempotency
Just as with provisioning, deprovisioning operations
should be idempotent. Running the same
deprovisioning script multiple times should result in
the same state, with resources either removed or
confirmed as already removed.

 Dependency Management

Ensure that dependent resources are deprovisioned
in the correct order. For example, deleting a database
instance should occur before removing the associat-
ed storage.

 Security
Proper deprovisioning helps in closing security gaps.
Ensure that access controls and sensitive data are
appropriately managed during deprovisioning to
prevent unauthorized access.

Terraform tracks resources in a state file. Deprovisioning can
be managed by modifying the configuration files and using
the terraform destroy command.

01 | Modify Configuration
To deprovision a resource, remove it from the
configuration file (main.tf):

02 | Apply the Changes
Run the following command to update the state
and deprovision the removed resource:

03 | Destroy Resources

White Paper | Infrastructure as Code 10

01 | Delete the Stack
Use the AWS Management Console or CLI to
delete the stack:

01 | Write a Deprovisioning Playbook
Create a playbook (teardown.yaml) to deprovision the
resources:stack:

02 | Run the Playbook
Execute the playbook to deprovision the resources:

This command will remove all the resources
defined in the stack.

Deprovisioning with AWS
CloudFormation

Deprovisioning with Ansible

AWS CloudFormation allows you to delete stacks
to deprovision resources

Ansible playbooks can be written to deprovision resources
by specifying the desired state as “absent”.

White Paper | Infrastructure as Code 11

Best Practices for Deprovisioning

Challenges in Deprovisioning

 Automate as Much as Possible
Use scripts and automation tools to handle deprovi-
sioning. Manual deprovisioning can lead to errors
and missed resources.

 Monitor and Audit
Implement monitoring and auditing to ensure that
resources are correctly deprovisioned. Tools like
AWS CloudTrail and Azure Activity Logs can help
track deprovisioning activities.

 Complex Dependencies
Handling complex dependencies between resources
can be challenging. Ensure that your deprovisioning
scripts account for these dependencies to avoid
issues.

 Data Persistence
Ensure that important data is backed up or migrated
before deprovisioning storage resources. Data loss
can occur if this step is overlooked.

 Regularly Review Resources
Conduct regular reviews of your infrastructure to
identify and deprovision unused or underutilized
resources. This helps in optimizing costs and
improving security.

 Document Processes
Maintain clear documentation for deprovisioning
processes. This ensures that team members
understand the steps and procedures involved,
reducing the risk of errors.

 Access Control
Properly manage access controls during
deprovisioning to prevent unauthorized access
to sensitive information.

Advanced IaC Practices

 Modularization

IaC enables rapid provisioning and scaling of
infrastructure. Automation reduces the time required
to deploy new environments, allowing faster devel-
opment and deployment cycles.

 Continuous Integration and Continuous
 Deployment (CI/CD

Integrate IaC with CI/CD pipelines to automate the
testing and deployment of infrastructure changes.
Tools like Jenkins, GitLab CI, and GitHub Actions
can be used to set up these pipelines.

White Paper | Infrastructure as Code 12

Company A: Scaling Infrastructure
with Terraform
Company A, a rapidly growing tech firm, needed to
scale its infrastructure to support increasing user
demand. By adopting Terraform, they automated the
provisioning of resources across multiple cloud
providers. This resulted in a 50% reduction in deploy-
ment time and improved resource utilization.

 State Management

IaC tools like Terraform manage state files that track
the current state of the infrastructure. Store these state
files securely, preferably in remote storage like AWS
S3, to ensure consistency and prevent data loss.

 Policy as Code

Implement policies as code to enforce compliance
and security standards. Tools like HashiCorp
Sentinel and Open Policy Agent (OPA) can be used
to define and enforce policies.

Challenges and Solutions
in Adopting IaC

Case Studies

 Cultural Shift

Adopting IaC requires a cultural shift towards
treating infrastructure as software. Organizations
must invest in training and promote collaboration
between development and operations teams.

 Skill Gap
There may be a skill gap in understanding and
implementing IaC. Providing adequate training and
resources is essential for a successful transition.

 Tool Selection
Choosing the right IaC tool can be challenging.
Evaluate tools based on your organization’s needs,
existing infrastructure, and team expertise.

 Security Concerns

Security is paramount in IaC. Ensure that sensitive
information, such as credentials, is managed securely
using tools like HashiCorp Vault and AWS Secrets
Manager.

 Managing Complexity
As infrastructure grows, managing complexity
becomes a challenge. Use modularization, automa-
tion, and documentation to keep configurations
manageable.

U
SU

-2
02
40
9

Smart businesses use USU
info@usu.com · www.usu.com

Conclusion
Infrastructure as Code is transforming how organizations manage and provision their
IT infrastructure. By adopting IaC principles and leveraging tools like Terraform, Ansible, and
 CloudFormation, organizations can achieve greater automation, consistency, and scalability.
While challenges exist, the benefits of IaC in terms of speed, efficiency, and reduced risk
make it a crucial practice for modern IT operations.

By following the practical implementations and best practices outlined in this whitepaper,
organizations can effectively adopt IaC and realize its full potential. The future of infrastructure
management lies in automation and code, and IaC is the pathway to achieving it.

Company C: Streamlining Develop-
ment with Ansible
Company C, a software development firm, used Ansible
to automate the setup of development environments.
This consistency across environments minimized
configuration drift and reduced the time to onboard
new developers by 40%.

Company B: Enhancing Security
with Policy as Code
Company B, operating in the finance sector, adopted
IaC to enhance security and compliance. Using Open
Policy Agent, they enforced security policies across
their infrastructure, ensuring compliance with industry
standards. This approach reduced security incidents
by 30%.

